Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(3): 113897, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38493478

RESUMEN

Chromatin structure is regulated through posttranslational modifications of histone variants that modulate transcription. Although highly homologous, histone variants display unique amino acid sequences associated with specific functions. Abnormal incorporation of histone variants contributes to cancer initiation, therapy resistance, and metastasis. This study reports that, among its biologic functions, histone H3.1 serves as a chromatin redox sensor that is engaged by mitochondrial H2O2. In breast cancer cells, the oxidation of H3.1Cys96 promotes its eviction and replacement by H3.3 in specific promoters. We also report that this process facilitates the opening of silenced chromatin domains and transcriptional activation of epithelial-to-mesenchymal genes associated with cell plasticity. Scavenging nuclear H2O2 or amino acid substitution of H3.1(C96S) suppresses plasticity, restores sensitivity to chemotherapy, and induces remission of metastatic lesions. Hence, it appears that increased levels of H2O2 produced by mitochondria of breast cancer cells directly promote redox-regulated H3.1-dependent chromatin remodeling involved in chemoresistance and metastasis.


Asunto(s)
Neoplasias de la Mama , Histonas , Humanos , Femenino , Histonas/metabolismo , Cromatina , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Resistencia a Múltiples Medicamentos , Neoplasias de la Mama/genética
2.
Res Sq ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38352423

RESUMEN

Objective As cohesin mutations are rarely found in MLL-rearranged acute myeloid leukemias, we investigated the potential synthetic lethality between cohesin mutations and MLL-AF9 using murine hematopoietic stem and progenitor cells. Results Contrary to our hypothesis, a complete loss of Stag2 or haploinsufficiency of Smc3 were well tolerated in MLL-AF9-expressing hematopoietic stem and progenitor cells. Minimal effect of cohesin subunit loss on the in vitro self-renewal of MLL-AF9-expressing cells was observed. Despite the differing mutational landscapes of cohesin-mutated and MLL fusion AMLs, previous studies showed that cohesin and MLL fusion mutations similarly drive abnormal self-renewal through HOXA gene upregulation. The utilization of a similar mechanism suggests that little selective pressure exists for the acquisition of cohesin mutations in AMLs expressing MLL fusions, explaining their lack of co-occurrence. Our results emphasize the importance of using genetic models to test suspected synthetic lethality and suggest that a lack of co-occurrence may instead point to a common mechanism of action between two mutations.

3.
Hypertension ; 81(2): 229-239, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38031837

RESUMEN

Essential hypertension, a multifaceted disorder, is a worldwide health problem. A complex network of genetic, epigenetic, physiological, and environmental components regulates blood pressure (BP), and any dysregulation of this network may result in hypertension. Growing evidence suggests a role for epigenetic factors in BP regulation. Any alterations in the expression or functions of these epigenetic regulators may dysregulate various determinants of BP, thereby promoting the development of hypertension. Histone posttranslational modifications are critical epigenetic regulators that have been implicated in hypertension. Several studies have demonstrated a clear association between the increased expression of some histone-modifying enzymes, especially HDACs (histone deacetylases), and hypertension. In addition, treatment with HDAC inhibitors lowers BP in hypertensive animal models, providing an excellent opportunity to design new drugs to treat hypertension. In this review, we discuss the potential contribution of different histone modifications to the regulation of BP.


Asunto(s)
Código de Histonas , Hipertensión , Animales , Histonas , Hipertensión/tratamiento farmacológico , Hipertensión/genética , Hipertensión Esencial , Procesamiento Proteico-Postraduccional , Epigénesis Genética
4.
Cancers (Basel) ; 15(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36900239

RESUMEN

Myeloid sarcomas (MS), commonly referred to as chloromas, are extramedullary tumors of acute myeloid leukemia (AML) with varying incidence and influence on outcomes. Pediatric MS has both a higher incidence and unique clinical presentation, cytogenetic profile, and set of risk factors compared to adult patients. Optimal treatment remains undefined, yet allogeneic hematopoietic stem cell transplantation (allo-HSCT) and epigenetic reprogramming in children are potential therapies. Importantly, the biology of MS development is poorly understood; however, cell-cell interactions, epigenetic dysregulation, cytokine signaling, and angiogenesis all appear to play key roles. This review describes pediatric-specific MS literature and the current state of knowledge about the biological determinants that drive MS development. While the significance of MS remains controversial, the pediatric experience provides an opportunity to investigate mechanisms of disease development to improve patient outcomes. This brings the hope of better understanding MS as a distinct disease entity deserving directed therapeutic approaches.

5.
Cell Biosci ; 13(1): 5, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36624475

RESUMEN

BACKGROUND: Alcohol-related liver disease (ALD) is characterized by ductular reaction (DR), liver inflammation, steatosis, fibrosis, and cirrhosis. The secretin (Sct)/secretin receptor (SR) axis (expressed only by cholangiocytes) regulates liver phenotypes in cholestasis. We evaluated the role of Sct signaling on ALD phenotypes. METHODS: We used male wild-type and Sct-/- mice fed a control diet (CD) or ethanol (EtOH) for 8 wk. Changes in liver phenotypes were measured in mice, female/male healthy controls, and patients with alcoholic cirrhosis. Since Cyp4a10 and Cyp4a11/22 regulate EtOH liver metabolism, we measured their expression in mouse/human liver. We evaluated: (i) the immunoreactivity of the lipogenesis enzyme elongation of very-long-chain fatty acids 1 (Elovl, mainly expressed by hepatocytes) in mouse/human liver sections by immunostaining; (ii) the expression of miR-125b (that is downregulated in cholestasis by Sct) in mouse liver by qPCR; and (iii) total bile acid (BA) levels in mouse liver by enzymatic assay, and the mRNA expression of genes regulating BA synthesis (cholesterol 7a-hydroxylase, Cyp27a1, 12a-hydroxylase, Cyp8b1, and oxysterol 7a-hydroxylase, Cyp7b11) and transport (bile salt export pump, Bsep, Na+-taurocholate cotransporting polypeptide, NTCP, and the organic solute transporter alpha (OSTa) in mouse liver by qPCR. RESULTS: In EtOH-fed WT mice there was increased biliary and liver damage compared to control mice, but decreased miR-125b expression, phenotypes that were blunted in EtOH-fed Sct-/- mice. The expression of Cyp4a10 increased in cholangiocytes and hepatocytes from EtOH-fed WT compared to control mice but decreased in EtOH-fed Sct-/- mice. There was increased immunoreactivity of Cyp4a11/22 in patients with alcoholic cirrhosis compared to controls. The expression of miR-125b decreased in EtOH-fed WT mice but returned at normal values in EtOH-fed Sct-/- mice. Elovl1 immunoreactivity increased in patients with alcoholic cirrhosis compared to controls. There was no difference in BA levels between WT mice fed CD or EtOH; BA levels decreased in EtOH-fed Sct-/- compared to EtOH-fed WT mice. There was increased expression of Cyp27a1, Cyp8b1, Cyp7b1, Bsep, NTCP and Osta in total liver from EtOH-fed WT compared to control mice, which decreased in EtOH-fed Sct-/- compared to EtOH-fed WT mice. CONCLUSIONS: Targeting Sct/SR signaling may be important for modulating ALD phenotypes.

6.
Am J Physiol Gastrointest Liver Physiol ; 324(1): G60-G77, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36410025

RESUMEN

Primary sclerosing cholangitis (PSC) is characterized by increased ductular reaction (DR), liver fibrosis, hepatic total bile acid (TBA) levels, and mast cell (MC) infiltration. Apical sodium BA transporter (ASBT) expression increases in cholestasis, and ileal inhibition reduces PSC phenotypes. FVB/NJ and multidrug-resistant 2 knockout (Mdr2-/-) mice were treated with control or ASBT Vivo-Morpholino (VM). We measured 1) ASBT expression and MC presence in liver/ileum; 2) liver damage/DR; 3) hepatic fibrosis/inflammation; 4) biliary inflammation/histamine serum content; and 5) gut barrier integrity/hepatic bacterial translocation. TBA/BA composition was measured in cholangiocyte/hepatocyte supernatants, intestine, liver, serum, and feces. Shotgun analysis was performed to ascertain microbiome changes. In vitro, cholangiocytes were treated with BAs ± ASBT VM, and histamine content and farnesoid X receptor (FXR) signaling were determined. Treated cholangiocytes were cocultured with MCs, and FXR signaling, inflammation, and MC activation were measured. Human patients were evaluated for ASBT/MC expression and histamine/TBA content in bile. Control patient- and PSC patient-derived three-dimensional (3-D) organoids were generated; ASBT, chymase, histamine, and fibroblast growth factor-19 (FGF19) were evaluated. ASBT VM in Mdr2-/- mice decreased 1) biliary ASBT expression, 2) PSC phenotypes, 3) hepatic TBA, and 4) gut barrier integrity compared with control. We found alterations between wild-type (WT) and Mdr2-/- mouse microbiome, and ASBT/MC and bile histamine content increased in cholestatic patients. BA-stimulated cholangiocytes increased MC activation/FXR signaling via ASBT, and human PSC-derived 3-D organoids secrete histamine/FGF19. Inhibition of hepatic ASBT ameliorates cholestatic phenotypes by reducing cholehepatic BA signaling, biliary inflammation, and histamine levels. ASBT regulation of hepatic BA signaling offers a therapeutic avenue for PSC.NEW & NOTEWORTHY We evaluated knockdown of the apical sodium bile acid transporter (ASBT) using Vivo-Morpholino in Mdr2KO mice. ASBT inhibition decreases primary sclerosing cholangitis (PSC) pathogenesis by reducing hepatic mast cell infiltration, altering bile acid species/cholehepatic shunt, and regulating gut inflammation/dysbiosis. Since a large cohort of PSC patients present with IBD, this study is clinically important. We validated findings in human PSC and PSC-IBD along with studies in novel human 3-D organoids formed from human PSC livers.


Asunto(s)
Colangitis Esclerosante , Colestasis , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Ratones , Colangitis Esclerosante/tratamiento farmacológico , Colangitis Esclerosante/genética , Colangitis Esclerosante/patología , Ácidos y Sales Biliares , Histamina , Morfolinos/uso terapéutico , Hígado/metabolismo , Colestasis/patología , Cirrosis Hepática/patología , Inflamación/patología , Proteínas de Transporte de Membrana , Enfermedades Inflamatorias del Intestino/patología
7.
Leukemia ; 36(8): 2032-2041, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35778533

RESUMEN

Acute myeloid leukemia (AML) is driven by mutations that occur in numerous combinations. A better understanding of how mutations interact with one another to cause disease is critical to developing targeted therapies. Approximately 50% of patients that harbor a common mutation in NPM1 (NPM1cA) also have a mutation in the cohesin complex. As cohesin and Npm1 are known to regulate gene expression, we sought to determine how cohesin mutation alters the transcriptome in the context of NPM1cA. We utilized inducible Npm1cAflox/+ and core cohesin subunit Smc3flox/+ mice to examine AML development. While Npm1cA/+;Smc3Δ/+ mice developed AML with a similar latency and penetrance as Npm1cA/+ mice, RNA-seq suggests that the Npm1cA/+; Smc3Δ/+ mutational combination uniquely alters the transcriptome. We found that the Rac1/2 nucleotide exchange factor Dock1 was specifically upregulated in Npm1cA/+;Smc3Δ/+ HSPCs. Knockdown of Dock1 resulted in decreased growth and adhesion and increased apoptosis only in Npm1cA/+;Smc3Δ/+ AML. Higher Rac activity was also observed in Npm1cA/+;Smc3Δ/+ vs. Npm1cA/+ AMLs. Importantly, the Dock1/Rac pathway is targetable in Npm1cA/+;Smc3Δ/+ AMLs. Our results suggest that Dock1/Rac represents a potential target for the treatment of patients harboring NPM1cA and cohesin mutations and supports the use of combinatorial genetics to identify novel precision oncology targets.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas Nucleares , Animales , Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Ratones , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Medicina de Precisión , Factores de Transcripción/genética , Proteínas de Unión al GTP rac , Cohesinas , Proteína RCA2 de Unión a GTP
8.
Sci Rep ; 11(1): 7288, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33790356

RESUMEN

Acute myeloid leukemia (AML) is a high-risk malignancy characterized by a diverse spectrum of somatic genetic alterations. The mechanisms by which these mutations contribute to leukemia development and how this informs the use of targeted therapies is critical to improving outcomes for patients. Importantly, how to target loss-of-function mutations has been a critical challenge in precision medicine. Heterozygous inactivating mutations in cohesin complex genes contribute to AML in adults by increasing the self-renewal capacity of hematopoietic stem and progenitor cells (HSPCs) by altering PRC2 targeting to induce HOXA9 expression, a key self-renewal transcription factor. Here we sought to delineate the epigenetic mechanism underpinning the enhanced self-renewal conferred by cohesin-haploinsufficiency. First, given the substantial difference in the mutational spectrum between pediatric and adult AML patients, we first sought to identify if HOXA9 was also elevated in children. Next, using primary HSPCs as a model we demonstrate that abnormal self-renewal due to cohesin loss is blocked by DOT1L inhibition. In cohesin-depleted cells, DOT1L inhibition is associated with H3K79me2 depletion and a concomitant increase in H3K27me3. Importantly, we find that there are cohesin-dependent gene expression changes that promote a leukemic profile, including HoxA overexpression, that are preferentially reversed by DOT1L inhibition. Our data further characterize how cohesin mutations contribute to AML development, identifying DOT1L as a potential therapeutic target for adult and pediatric AML patients harboring cohesin mutations.


Asunto(s)
Proteínas de Ciclo Celular/genética , Autorrenovación de las Células , Proteínas Cromosómicas no Histona/genética , Células Madre Hematopoyéticas/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Leucemia Mieloide Aguda/metabolismo , Animales , Bencimidazoles/farmacología , Proteínas de Ciclo Celular/deficiencia , Células Cultivadas , Proteínas Cromosómicas no Histona/deficiencia , Inhibidores Enzimáticos/farmacología , Epigénesis Genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/fisiología , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Ratones , Cohesinas
9.
Neoplasia ; 23(3): 337-347, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33621854

RESUMEN

Acute myeloid leukemia (AML) affects tens of thousands of patients a year, yet survival rates are as low as 25% in certain populations. This poor survival rate is partially due to the vast genetic diversity of the disease. Rarely do 2 patients with AML have the same mutational profile, which makes the development of targeted therapies particularly challenging. However, a set of recurrent mutations in chromatin modifiers have been identified in many patients, including mutations in the cohesin complex, which have been identified in up to 20% of cases. Interestingly, the canonical function of the cohesin complex in establishing sister chromatid cohesin during mitosis is unlikely to be the affected role in leukemogenesis. Instead, the cohesin complex's role in DNA looping and gene regulation likely facilitates disease. The epigenetic mechanisms by which cohesin complex mutations promote leukemia are not completely elucidated, but alterations of enhancer-promoter interactions and differential histone modifications have been shown to drive oncogenic gene expression changes. Such changes commonly include HoxA upregulation, which may represent a common pathway that could be therapeutically targeted. As cohesin mutations rarely occur alone, examining the impact of common co-occurring mutations, including those in NPM1, the core-binding factor complex, FLT3, and ASXL1, will yield additional insight. While further study of these mutational interactions is required, current research suggests that the use of combinatorial genetics could be the key to uncovering new targets, allowing for the treatment of AML patients based on their individual genetic profiles.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Susceptibilidad a Enfermedades , Leucemia Mieloide Aguda/etiología , Mutación , Oncogenes , Animales , Proteínas Portadoras , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Nucleofosmina , Unión Proteica , Multimerización de Proteína , Relación Estructura-Actividad , Cohesinas
10.
J Biol Chem ; 296: 100189, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33334884

RESUMEN

Transcriptional enhancers have been defined by their ability to operate independent of distance and orientation in plasmid-based reporter assays of gene expression. At present, histone marks are used to identify and define enhancers but do not consider the endogenous role of an enhancer in the context of native chromatin. We employed a combination of genomic editing, single cell analyses, and sequencing approaches to investigate a Nanog-associated cis-regulatory element, which has been reported by others to be either an alternative promoter or a super-enhancer. We first demonstrate both distance and orientation independence in native chromatin, eliminating the issues raised with plasmid-based approaches. We next demonstrate that the dominant super-enhancer modulates Nanog globally and operates by recruiting and/or initiating RNA Polymerase II. Our studies have important implications to how transcriptional enhancers are defined and how they regulate gene expression.


Asunto(s)
Proteína Homeótica Nanog/genética , ARN Polimerasa II/genética , Animales , Sistemas CRISPR-Cas , Línea Celular , Elementos de Facilitación Genéticos , Edición Génica , Regulación de la Expresión Génica , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Activación Transcripcional
11.
Neoplasia ; 22(11): 644-658, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33070870

RESUMEN

Fbw7 is a tumor suppressor that regulates the degradation of oncogenic substrates such as c-Jun, c-Myc, Notch1 intracellular domain (ICD), and cyclin E by functioning as the substrate recognition protein in the Skp1-Cullin-F-box (SCF) ubiquitin ligase complex. Consequently, low expression or loss of FBXW7 in breast cancer has been hypothesized to result in the accumulation of oncogenic transcription factors that are master regulators of proliferation, apoptosis, and ultimately transformation. Despite this, the direct effect of Fbw7 loss on mammary gland morphology and tumorigenesis has not been examined. Here, we demonstrate that conditional deletion of Fbxw7 in murine mammary tissue initiates breast tumor development and also results in lactation and involution defects. Further, while Fbxw7 loss results in the overexpression of Notch1-ICD, c-Jun, cyclin E, and c-Myc, the downstream transcription factor pathways associated with c-Myc and cyclin E are the most dysregulated, including at the single-cell level. These pathways are dysregulated early after Fbxw7 loss, and their sustained loss results in tumorigenesis and reinforced c-Myc and cyclin E-E2F pathway disruption. We also find that loss of Fbxw7 is linked to the acquisition of Trp53 mutations, similar to the mutational spectrum observed in patients. Our results demonstrate that the loss of Fbxw7 promotes the acquisition of Trp53 mutations and that the two cooperate in breast tumor development. Targeting c-Myc, E2F, or p53 may therefore be a beneficial treatment strategy for FBXW7-altered breast cancer patients.


Asunto(s)
Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Factores de Transcripción E2F/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD/deficiencia , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína p53 Supresora de Tumor/genética , Secuencia de Aminoácidos , Animales , Neoplasias de la Mama , Línea Celular Tumoral , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Proteína 7 que Contiene Repeticiones F-Box-WD/química , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Inmunohistoquímica , Ratones , Ratones Noqueados , Ratones Transgénicos , Mutación , Transcripción Genética
12.
Oncotarget ; 8(46): 80107-80108, 2017 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-29113287
13.
J Prosthet Dent ; 115(4): 469-74, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26723088

RESUMEN

STATEMENT OF PROBLEM: To our knowledge, no data are available on the actual lighting that is used for visual shade matching in private dental offices. PURPOSE: The purpose of this study was to determine the shade matching practices and interest in continuing education in dental practices and to determine the quantity and quality of the ambient lighting used during visual shade matching in a sample cohort of dentists in private practices. MATERIAL AND METHODS: Thirty-two private practices were enrolled, and each completed a 1-page survey on the clinic's shade matching practices. A spectrophotometer was used to measure the ambient lighting in each practice, collecting data on color temperature (Kelvin), color rendering index (CRI), and light intensity (foot candles/fc). A 2-sided nonparametric sign test was used to compare the true median color temperature with the standard (5500°K). A 1-sided t test was used to compare the CRI with the standard (CRI >90) (α=.05 for all statistical analyses). RESULTS: All dental practitioners surveyed used mainly visual shade matching in their practices. Of those, 87.5% showed interest in attending continuing education on this topic, with 56.3% preferring a clinical demonstration course. The mean color temperature was 4152.9°K and was significantly different from the standard 5500°K (P<.001). The 1-sided t test indicated that the mean CRI was less than 90 (P=1). The 95% confidence interval for the intensity was 80.7 to 111.6 fc. CONCLUSIONS: The ambient light in the majority of the 32 dental private practices measured was not ideal for visual shade matching.


Asunto(s)
Iluminación , Coloración de Prótesis/métodos , Coloración de Prótesis/normas , Percepción de Color , Consultorios Odontológicos , Diseño de Prótesis Dental , Humanos
14.
Biochim Biophys Acta ; 1853(5): 1035-45, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25639645

RESUMEN

J-proteins, obligate co-chaperones, provide specialization for Hsp70 function in a variety of cellular processes. Two of the 13 J-proteins of the yeast cytosol/nucleus, Zuo1 and Jjj1, are associated with 60S ribosomal subunits. Abundant Zuo1 facilitates folding of nascent polypeptides; Jjj1, of much lower abundance, functions in ribosome biogenesis. However, overexpression of Jjj1 substantially rescues growth defects of cells lacking Zuo1. We analyzed a region held in common by Zuo1 and Jjj1, outside the signature J-domain found in all J-proteins. This shared "zuotin homology domain" (ZHD) is important for ribosome association of both proteins. An N-terminal segment of Jjj1, containing the J-domain and ZHD, is ribosome-associated and, like full-length Jjj1, is competent to rescue both the cold- and cation-sensitivity of ∆zuo1. However, this fragment, when expressed at normal levels, cannot rescue the cytosolic ribosome biogenesis defect of ∆jjj1. Our results are consistent with a model in which the primary functions of Zuo1 and Jjj1 occur in the cytosol. In addition, our data suggest that Zuo1 and Jjj1 bind overlapping sites on ribosomes due to an interaction via their common ZHDs, but Jjj1 binds primarily to pre-60S particles and Zuo1 to mature subunits. We hypothesize that ZUO1 and JJJ1, which are conserved throughout eukaryotes, arose from an ancient duplication of a progenitor J-protein gene that encoded the ZHD ribosome-binding region; subsequently, specialized roles and additional ribosome interaction sites evolved.


Asunto(s)
Secuencia Conservada , Proteínas del Choque Térmico HSP40/metabolismo , Chaperonas Moleculares/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Arginina/metabolismo , Proteínas del Choque Térmico HSP40/química , Chaperonas Moleculares/química , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Subunidades Ribosómicas Grandes de Eucariotas , Proteínas de Saccharomyces cerevisiae/química , Relación Estructura-Actividad
15.
Mol Biol Cell ; 25(15): 2291-304, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24870032

RESUMEN

The majority of breast cancers originate from the highly polarized luminal epithelial cells lining the breast ducts. However, cell polarity is often lost during breast cancer progression. The type III transforming growth factor-ß cell surface receptor (TßRIII) functions as a suppressor of breast cancer progression and also regulates the process of epithelial-to-mesenchymal transition (EMT), a consequence of which is the loss of cell polarity. Many cell surface proteins exhibit polarized expression, being targeted specifically to the apical or basolateral domains. Here we demonstrate that TßRIII is basolaterally localized in polarized breast epithelial cells and that disruption of the basolateral targeting of TßRIII through a single amino acid mutation of proline 826 in the cytosolic domain results in global loss of cell polarity through enhanced EMT. In addition, the mistargeting of TßRIII results in enhanced proliferation, migration, and invasion in vitro and enhanced tumor formation and invasion in an in vivo mouse model of breast carcinoma. These results suggest that proper localization of TßRIII is critical for maintenance of epithelial cell polarity and phenotype and expand the mechanisms by which TßRIII prevents breast cancer initiation and progression.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteoglicanos/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular , Polaridad Celular , Proliferación Celular , Progresión de la Enfermedad , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Femenino , Humanos , Ratones Desnudos , Mutación Missense , Trasplante de Neoplasias , Transporte de Proteínas , Proteoglicanos/genética , Receptores de Factores de Crecimiento Transformadores beta/genética , Factor de Crecimiento Transformador beta/fisiología
16.
Influenza Other Respir Viruses ; 7 Suppl 2: 82-86, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24034490

RESUMEN

When the influenza A (H1N1) pandemic spread across the globe from April 2009 to August 2010, many WHO Member States used antiviral drugs, specifically neuraminidase inhibitors (NAIs) oseltamivir and zanamivir, to treat influenza patients in critical condition. Antivirals have been found to be effective in reducing severity and duration of influenza illness, and likely reduce morbidity; however, it is unclear whether NAIs used during the pandemic reduced H1N1 mortality. To assess the association between antivirals and influenza mortality, at an ecologic level, country-level data on supply of oseltamivir and zanamivir were compared to laboratory-confirmed H1N1 deaths (per 100 000 people) from July 2009 to August 2010 in 42 WHO Member States. From this analysis, it was found that each 10% increase in kilograms of oseltamivir, per 100 000 people, was associated with a 1·6% reduction in H1N1 mortality over the pandemic period [relative rate (RR) = 0·84 per log increase in oseltamivir supply]. Each 10% increase in kilogram of active zanamivir, per 100 000, was associated with a 0·3% reduction in H1N1 mortality (RR = 0·97 per log increase). While limitations exist in the inference that can be drawn from an ecologic evaluation, this analysis offers evidence of a protective relationship between antiviral drug supply and influenza mortality and supports a role for influenza antiviral use in future pandemics. This article summarises the original study described previously, which can be accessed through the following citation: Miller PE, Rambachan A, Hubbard RJ, Li J, Meyer AE, et al. (2012) Supply of Neuraminidase Inhibitors Related to Reduced Influenza A (H1N1) Mortality during the 2009-2010 H1N1 Pandemic: An Ecological Study. PLoS ONE 7(9): e43491.


Asunto(s)
Antivirales/uso terapéutico , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/tratamiento farmacológico , Gripe Humana/virología , Neuraminidasa/antagonistas & inhibidores , Proteínas Virales/antagonistas & inhibidores , Antivirales/provisión & distribución , Humanos , Gripe Humana/epidemiología , Gripe Humana/mortalidad , Oseltamivir/provisión & distribución , Oseltamivir/uso terapéutico , Pandemias , Análisis de Supervivencia , Resultado del Tratamiento , Zanamivir/provisión & distribución , Zanamivir/uso terapéutico
17.
PLoS One ; 7(9): e43491, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22984431

RESUMEN

BACKGROUND: The influenza A (H1N1) pandemic swept across the globe from April 2009 to August 2010 affecting millions. Many WHO Member States relied on antiviral drugs, specifically neuraminidase inhibitors (NAIs) oseltamivir and zanamivir, to treat influenza patients in critical condition. Such drugs have been found to be effective in reducing severity and duration of influenza illness, and likely reduced morbidity during the pandemic. However, it is less clear whether NAIs used during the pandemic reduced H1N1 mortality. METHODS: Country-level data on supply of oseltamivir and zanamivir were used to predict H1N1 mortality (per 100,000 people) from July 2009 to August 2010 in forty-two WHO Member States. Poisson regression was used to model the association between NAI supply and H1N1 mortality, with adjustment for economic, demographic, and health-related confounders. RESULTS: After adjustment for potential confounders, each 10% increase in kilograms of oseltamivir, per 100,000 people, was associated with a 1.6% reduction in H1N1 mortality over the pandemic period (relative rate (RR) = 0.84 per log increase in oseltamivir supply). While the supply of zanamivir was considerably less than that of oseltamivir in each Member State, each 10% increase in kilogram of active zanamivir, per 100,000, was associated with a 0.3% reduction in H1N1 mortality (RR = 0.97 per log increase). CONCLUSION: While there are limitations to the ecologic nature of these data, this analysis offers evidence of a protective relationship between antiviral drug supply and influenza mortality and supports a role for influenza antiviral use in future pandemics.


Asunto(s)
Inhibidores Enzimáticos/provisión & distribución , Inhibidores Enzimáticos/uso terapéutico , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/tratamiento farmacológico , Gripe Humana/mortalidad , Neuraminidasa/antagonistas & inhibidores , Pandemias/prevención & control , Antivirales/farmacología , Antivirales/provisión & distribución , Antivirales/uso terapéutico , Geografía , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Neuraminidasa/metabolismo , Oseltamivir/provisión & distribución , Oseltamivir/uso terapéutico , Distribución de Poisson , Análisis de Regresión , Factores Socioeconómicos , Organización Mundial de la Salud , Zanamivir/provisión & distribución , Zanamivir/uso terapéutico
18.
J Biol Chem ; 285(2): 961-8, 2010 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-19901025

RESUMEN

Although the biogenesis of ribosomal subunits occurs predominantly in the nucleus, final remodeling steps take place in the cytosol. One cytosolic step has two components: 1) the removal of the maturation factor Arx1, which transits from the nucleus to the cytosol with the pre-60 S subunit, and 2) its subsequent transport back into the nucleus. Two cytosolic proteins, Rei1 and Jjj1, are required, but their individual contributions to this step are not understood. Here we report that Rei1 and Jjj1 directly interact. This interaction is mediated by a C-terminal segment of Jjj1 encompassing a region rich in charged residues, flanked by C(2)H(2)-type zinc fingers. Deletion of the charged region results in defects in 60 S subunit biogenesis in vivo. In addition, we report resolution of an apparent contradiction in the literature regarding the association of Arx1 with the pre-60 S subunit in the absence of Rei1. The association of Arx1 with ribosomes is sensitive to the concentration of magnesium ions when Rei1 is absent. At near physiological concentrations, Arx1 remains associated with the pre-60 S particle, as it does in the absence of Jjj1; at higher concentrations, Arx1 dissociates in the absence of Rei1 but not in the absence of Jjj1. As both Rei1 and Jjj1 are required for dissociation of Arx1 from the pre-60 S subunit, and the region of Jjj1 that mediates interaction with Rei1 is required in vivo for 60 S subunit biogenesis, our data support the idea that the primary role of both Rei1 and Jjj1 is the first step of the Arx1 removal/recycling process.


Asunto(s)
Citosol/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos/genética , Proteínas del Choque Térmico HSP40/genética , Estructura Terciaria de Proteína/fisiología , Subunidades Ribosómicas Grandes de Eucariotas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Eliminación de Secuencia/genética , Dedos de Zinc/fisiología
19.
Proc Natl Acad Sci U S A ; 104(5): 1558-63, 2007 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-17242366

RESUMEN

J-proteins and Hsp70 chaperones function together in diverse cellular processes. We identified a cytosolic J-protein, Jjj1, of Saccharomyces cerevisiae that is associated with 60S ribosomal particles. Unlike Zuo1, a 60S subunit-associated J-protein that is a component of the chaperone machinery that binds nascent polypeptide chains upon their exit from the ribosome, Jjj1 plays a role in ribosome biogenesis. Cells lacking Jjj1 have phenotypes very similar to those lacking Rei1, a ribosome biogenesis factor associated with pre-60S ribosomal particles in the cytosol. Jjj1 stimulated the ATPase activity of the general cytosolic Hsp70 Ssa, but not Ssb, Zuo1's ribosome-associated Hsp70 partner. Overexpression of Jjj1, which is normally approximately 40-fold less abundant than Zuo1, can partially rescue the phenotypes of cells lacking Zuo1 as well as cells lacking Ssb. Together, these results are consistent with the idea that Jjj1 normally functions with Ssa in a late, cytosolic step of the biogenesis of 60S ribosomal subunits. In addition, because of its ability to bind 60S subunits, we hypothesize that Jjj1, when overexpressed, is able to partially substitute for the Zuo1:Ssb chaperone machinery by recruiting Ssa to the ribosome, facilitating its interaction with nascent polypeptide chains.


Asunto(s)
Citosol/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas del Choque Térmico HSP40/fisiología , Ribosomas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/metabolismo , Dimerización , Regulación Fúngica de la Expresión Génica , Proteínas del Choque Térmico HSP40/química , Proteínas del Choque Térmico HSP40/genética , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Chaperonas Moleculares , Fenotipo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Temperatura
20.
Eukaryot Cell ; 3(3): 685-94, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15189989

RESUMEN

Three insertion elements were previously found in a family of germ line-limited mobile elements, the Tlr elements, in the ciliate Tetrahymena. Each of the insertions contains an open reading frame (ORF). Sequence analysis of the deduced proteins encoded by the elements suggests that they are homing endonucleases. The genes are designated TIE1-1, TIE2-1, and TIE3-1 for Tetrahymena insertion-homing endonuclease. The endonuclease motif occupies the amino terminal half of each TIE protein. The C-terminal regions of the proteins are similar to the APETELA2 DNA binding domain of plant transcription factors. The TIE1 and TIE3 elements belong to families of repeated sequences in the germ line micronuclear genome. Comparison of the genes and the deduced proteins they encode suggests that there are at least two distinct families of homing endonuclease genes, each of which appears to be preferentially associated with a specific region of the Tlr elements. The TIE1 and TIE3 elements and their cognates undergo programmed elimination from the developing somatic macronucleus of Tetrahymena. The possible role of homing endonuclease-like genes in the DNA breakage step in developmentally programmed DNA elimination in Tetrahymena is discussed.


Asunto(s)
Elementos Transponibles de ADN/genética , Endonucleasas/genética , Estructura Terciaria de Proteína , Proteínas Protozoarias/genética , Tetrahymena thermophila/genética , Secuencia de Aminoácidos , Animales , Clonación Molecular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Unión Proteica , Estructura Terciaria de Proteína/genética , Proteínas Protozoarias/metabolismo , Tetrahymena thermophila/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...